Volatility Estimation with Functional Gradient Descent for Very High-Dimensional Financial Time Series
نویسنده
چکیده
We propose a functional gradient descent algorithm (FGD) for estimating volatility and conditional covariances (given the past) for very high-dimensional financial time series of asset price returns. FGD is a kind of hybrid of nonparametric statistical function estimation and numerical optimization. Our FGD algorithm is computationally feasible in multivariate problems with dozens up to thousands of individual return series. Moreover, we demonstrate on some synthetic and real data-sets with dimensions up to 100, that it yields significantly, much better predictions than more classical approaches such as a constant conditional correlation GARCH-type model. Since our FGD algorithm is constructed from a generic algorithm, the technique can be adapted to other problems of learning in very high dimensions. Heading: High-dimensional volatility estimation
منابع مشابه
Semiparametric Multivariate GARCH Models for Volatility Asymmetries and Dynamic Correlations
We propose a simple class of semiparametric multivariate GARCH models, allowing for asymmetric volatilities and time-varying conditional correlations. Estimates for time-varying conditional correlations are constructed by means of a convex combination of estimates for averaged correlations (across all assets) and dynamic realized (historical) correlations. Our model is very parsimonious. Estima...
متن کاملFrontiers in Time Series and Financial Econometrics: An Overview
Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...
متن کاملAnalysis of Financial Time Series Data Using Adaptive Neuro Fuzzy Inference System (ANFIS)
The aim of this research is to analyze ANFIS performance for prediction of financial time series data. Financial time series data is usually characterized by volatility clustering, persistence, and leptokurtic data behavior. The financial time series data are usually non-stationary and non-linear. ARIMA has a good performance to predict linear time series data, but its performance is decreasing...
متن کاملComparative study of Financial Time Series Prediction by Artificial Neural Network with Gradient Descent Learning
Financial forecasting is an example of a signal processing problem w hich is challenging due to Small sizes, high noise, nonstationarity, and non-linearity,but fast forecasting of stock market price is very important for strategic business planning.Present study is aimed to develop a comparative predictive model w ith Feedforward Multilayer Artif icial Neural Netw ork & Recurrent Time Delay Neu...
متن کاملModeling financial volatility A functional approach with applications to Swedish limit order book data
This thesis is designed to offer an approach to modeling volatility in the Swedish limit order market. Realized quadratic variation is used as an estimator of the integrated variance, which is a measure of the variability of a stochastic process in continuous time. Moreover, a functional time series model for the realized quadratic variation is introduced. A two-step estimation procedure for su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002